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ABSTRACT

In most digital imaging applications, high resolution images or videos are usually desired

for later image processing and analysis. The desire for high image resolution stems from two

principal application areas: improvement of pictorial information for human interpretation;

and helping representation for au- tomatic machine perception. Image resolution describes the

details contained in an image, the higher the resolution, the more image details. The resolution

of a digital image can be classified in many different ways: pixel resolution,spatial resolution,

spectral resolution, temporal resolution, and radiometric resolution. In this context, we are

mainly interested in spatial resolution.

Super-resolution (SR) are techniques that construct high-resolution (HR) images from

several observed low-resolution (LR) images, thereby increasing the high frequency compo-

nents and removing the degradations caused by the imaging process of the low resolution cam-

era. The basic idea behind SR is to combine the non-redundant information contained in multi-

ple low-resolution frames to generate a high-resolution image. A closely related technique with

SR is the single image interpolation approach, which can be also used to increase the image

size. However, since there is no additional information provided, the quality of the single image

interpolation is very much limited due to the ill-posed nature of the problem, and the lost fre-

quency components cannot be recovered. In the SR setting, however, multiple low-resolution

observations are available for reconstruction, making the problem better constrained. The non-

redundant information contained in the these LR images is typically introduced by sub-pixel

shifts between them. These sub-pixel shifts may occur due to uncontrolled motions between

the imaging system and scene, e.g., movements of objects, or due to controlled motions, e.g.,

the satellite imaging system orbits the earth with predefined speed and path.
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Super Resolution of Single Image 1

CHAPTER 1

Introduction

Over the past ten years, digital cameras have gone through a fast evolution towards ex-

tremely compact models, containing sensors with a steadily increasing number of pixels. From

about 0.3 mega-pixels (million pixels) in 1993, the number of pixels on the CCD or CMOS

sensor in a digital camera has increased to 39 mega pixels in some of the latest professional

models. This pixel count has become the major selling argument for the different camera man-

ufacturers [4].

The number of pixels in a digital image is also often referred to as the resolution of an

image. The ever-increasing demand for more pixels, or higher resolution, in combination with

the availability of more and more computational power, has generated a large interest in super-

resolution imaging. The goal in super-resolution imaging is to take multiple ’low’ resolution

images of the same scene, and combine them to generate a ’higher’ resolution image. In this

way, a photographer could for example take a series of four images using a four mega-pixel

camera, and combine them to obtain an image as if it would be taken with a sixteen mega-pixel

camera. And who would not be interested in such a feature?

In practice, such a combination of information from multiple images is not trivial. There

are two main problems that need to be solved in a super resolution algorithm. First, all the input

images need to be correctly aligned with each other on a common grid[39]. Next, an accurate,

sharp image has to be reconstructed from the gathered information. If one of these two steps

is not well done, the resulting image is not good, and no gain in resolution is obtained. In this

thesis, we mainly address the first problem, more specifically the alignment of aliased input

images. An image is aliased if there are not enough sampling points (pixels) to represent the

high frequencies in the scene. This typically results in artificial patterns or jagged edges in
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Super Resolution of Single Image 2

the image. If the images are not too severely aliased, we will show that it is possible to use

the aliasing-free part of the images to align them one by one to a reference image. If there is

severe aliasing, the different images need to be aligned jointly. In that case, the alignment is

a highly non-linear problem. Multiple solution methods for such an alignment are proposed.

The presented image alignment methods can be applied to different application domains, such

as consumer digital cameras, satellite imaging etc.

This thesis addresses the problem of image super-resolution, which is the process by

which one or more low-resolution images are processed together to create an image (or set of

images) with a higher spatial resolution.

Single image super-resolution refers to the particular case where single images of the

scene are available. In general, changes in these low-resolution images caused by camera or

scene motion, camera zoom, focus and blur mean that we can recover extra data to allow us

to reconstruct an output image at a resolution above the limits of the original camera or other

imaging device [1] .

Problems motivating super-resolution arise in a number of imaging fields, such as satellite

surveillance pictures and remote monitoring , where the size of the CCD array used for imaging

may introduce physical limitations on the resolution of the image data. Medical diagnosis may

be made more easily or more accurately if data from a number of scans can be combined into

a single more detailed image. A clear, high-quality image of a region of interest in a video

sequence may be useful for facial recognition algorithms, car number plate identification, or

for producing a "print-quality" picture for the press.

1.1 Motivation & Scope

The motivation behind SR is quite clear: there are many situations where the resolution

that can give a sensor is limited because of physical or economical constraints[34] . SR can

Jyothi Engineering College, Cheruthuruthy Dept. of CSE, 2014



Super Resolution of Single Image 3

improve the resolution in many cases where other techniques are not feasible. The ample range

of applications that we exposed in the previous section exemplifies this. The specific objectives

that we pursue in this dissertation are explained below. In the super-resolution literature, the

representation of the system as a discrete linear system has been the mainstream in most recent

publications. The trend is to solve the problem as a whole, performing jointly as most tasks as

possible: registration, interpolation, de-blurring and restoration [8] . Although supposedly we

could then achieve a global optimum that would be unattainable otherwise, this leads to a very

complex problem with too many degrees of freedom.

1.2 Application

Super-resolution techniques can be applied in various domains. As described above, in

consumer imaging, one could imagine a digital camera that takes a burst of pictures instead of

a single picture[2] . From these images, which have typically small relative shifts due to the

shaking of the user’s hands, a high resolution image can be reconstructed. Similarly, in satellite

or spatial imaging, a set of satellite images could be combined to display fine details that are

not distinguishable in any of the input images [34]. Super-resolution methods can also be used

to create high resolution still pictures or video from video sequences. In surveillance cameras,

additional details can be revealed by combining multiple video frames to create a single high

resolution image. The same techniques can also be applied to improve the resolution of existing

(low resolution) video content for use in high definition television sets.

A similar approach for one-dimensional signals is used in high rate analog to- digital

(A/D) converters. If the rate at which the analog signal has to be sampled becomes too high, it

is physically very difficult to build such converters. Instead of a single converter at a high rate,

multiple converters at a lower rate are then used in parallel [16]. Each of the low rate converters

has a small relative offset, such that the high rate signal can be reconstructed by combining the

different low rate signals. In the ideal case, with for example two low rate converters, the
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samples of the second converter are taken exactly in the middle between the samples of the first

converter. The two signals can then be interleaved to obtain a signal at twice the rate. However,

the precise synchronization of such converters is very difficult [10]. This is exactly the same

problem as the alignment of images in super-resolution imaging, but now for one-dimensional

signals. The methods described in the following chapters can therefore also be applied to such

problems.

Applications for the techniques of super-resolution restoration from image sequences ap-

pear to be growing rapidly as the theory gains exposure. Continued research and the availability

of fast computational machinery have made these methods increasingly attractive in applica-

tions requiring the highest restoration performance. If we consider that in many applications

the increase in sensor resolution comes at a high cost and that increase could be carried out

using SR techniques, we can easily see that in many cases is preferable to employ SR instead

of increasing physically the sensor resolution. Of course in some cases this is difficult: com-

plicated registration of the images or resolution already limited by the diffraction limit may

prevent the use of SR techniques. But as SR theory starts to stabilize, applications start to soar.

SR restoration techniques have already been applied to problems in:

• Black and white photography [33]

• Satellite imaging [25]

• Astronomical imaging [20]

• Video enhancement and restoration [40]

• Video standards conversion [27]

• Confocal Microscopy

• Applied jointly with mosaicing

• Aperture displacement cameras
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• Diffraction tomography

• Restoration of MPEG-coded video streams

• Magnetic Resonance Imaging (MRI)

• Positron Emission Tomography (PET)

• Applied to photographic camera color images

• Forward looking infrared cameras

1.3 Challenges

Super-resolution algorithms face a number of challenges in parallel with their main super-

resolution task. In addition to being able to compute values for all the superresolution image

pixels intensities given the low-resolution image pixel intensities, a super-resolution system

must also be able to handle:

• Image registration : small image displacements are crucial for beating the sampling limit

of the original camera, but the exact mappings between these images are unknown. To

achieve an accurate super-resolution result, they need to be found as accurately as possi-

ble.

• Lighting variation : when the images are aligned geometrically, there may still be sig-

nificant photometric variation, because of different lighting levels or camera exposure

settings when the images were captured.

• Blur identification -:before the light from a scene reaches the film or camera CCD array,

it passes through the camera optics. The blurs introduced in this stage are modelled by a

point-spread function. Separating a blur kernel from an image is an extensively-studied

and challenging problem known as Blind Image Deconvolution. This can be even more

challenging if the blur varies spatially across the image.

Jyothi Engineering College, Cheruthuruthy Dept. of CSE, 2014
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CHAPTER 2

Literature Survey

2.1 Introduction

Image super-resolution is a well-studied problem. A comprehensive review was carried

out by Borman and Stevenson [7] in 1998, though in the intervening period a wide variety of

super-resolution work has contributed to many branches of the super-resolution problem.

There are several popular approaches to super-resolution overall, and a number of dif-

ferent fundamental assumptions to be made, which can in turn lead to very different super-

resolution algorithms. Model assumptions such as the type of motion relating the low-resolution

input images, or the type of noise that might exist on their pixel values, commonly vary signifi-

cantly, with many approaches being tuned to particular assumptions about the input scenes and

configurations that the authors are interested in. There is also the question of whether the goal

is to produce the very best high-resolution image possible, or a passable high-resolution image

as quickly as possible.

The formulation of the problem usually falls into one of two main categories: either Maxi-

mum Likelihood (ML) methods, i.e. those which seek a super-resolution image that maximizes

the probability of the observed low-resolution input images under a given model, or Maximum

a Posteriori (MAP) methods, which make explicit use of prior information, though these are

also commonly couched as regularized least-squares problems.

The goal of super-resolution (SR) is to estimate a high resolution (HR) image from one

or a set of low-resolution (LR) images. This inverse problem is inherently ill-posed since many

HR images can produce the same LR image. SR methods can be broadly categorized into three

Jyothi Engineering College, Cheruthuruthy Dept. of CSE, 2014
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classes as in [23] interpolation-based methods, learning-based methods and reconstruction-

based methods. Interpolation based methods (e.g., [23, 18, 41]) are fast but the results are lack

of fine details. Reconstruction based methods (e.g., [6, 22, 26, 28, 19] apply various smoothness

priors (e.g., [3, 31, 17]) and impose the constraint that when properly down sampled, the HR

image should reproduce the original LR image. Alternatively, in learning-based methods (e.g.,

[8, 42, 14, 29]), detailed textures are hallucinated by searching through a training set of LR/HR

image or patch pairs. However, note that the training images need to be carefully selected,

otherwise unexpected details can be found [12].

We begin with the historically earliest methods, which tend to represent the simplest forms

of the super-resolution ideas. From these grow a wide variety of different approaches, which we

then survey, turning our attention back to more detailed model considerations, in particular the

ways in which registration and blur estimation are handled in the literature. Finally, we cover

a few super-resolution approaches which fit less well into any of the categories or methods of

solution listed so far.

2.2 Early super-resolution methods

Super-Resolution was first proposed in a seminal paper by Tsai and Huang (1984)[37],

who suggested a frequency domain approach to super-resolution. This initial approach assumes

a translational movement among the LR images and is based on the following principles:

• The shifting property of the Fourier transform.

• The aliasing relationship between the continuous Fourier transform of the ideal HR image

and the discrete Fourier transform of the observed LR images.

• The assumption that the ideal HR image is band-limited.

The field of super-resolution began growing in earnest in the late eighties and early

nineties. In the signal processing literature, approaches were suggested for the processing
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of images in the frequency domain in order to recover lost high-frequency information, gener-

ally following on from the work of Tsai and Huang [37] and later Kim et al. [24]. Roughly

concurrent with this in the Computer Vision arena was the work of Peleg, Keren, Irani and

colleagues [22], which favoured the spatial domain exclusively, and proposed novel methods

for super-resolution reconstruction.

2.2.1 Simple super-resolution schemes

Enhancement by frame-fusion is possible when we have several images of the same sur-

face and a dense correspondence (from either geometric or general registration) between the

images. It attempts to reverse all of the degradations at once, recovering a de-blurred, high

spatial-resolution surface texture.

The simplest methods attempt to re-sample all the observed image data into a single co-

ordinate frame. The re-sampled data is merged by averaging or median filtering to obtain a

low-noise, high-density image. A standard, single-image de-blurring step completes the pro-

cess.

Early work was done by Gross [38], based on generalized sampling theory. They as-

sume that the input images undergo relative shifts which are known precisely a priori. The

low-resolution images are interpolated and merged onto a finer grid, before deblurring by con-

volution with a kernel derived from the inverse of the blur operator. A similar technique has

been proposed by Rudin et al. [30]. They use a hierarchical block-matching algorithm to ob-

tain a dense optic flow field. One view is chosen as a reference frame and its resolution is

increased to the desired level using a simple interpolation kernel. The other images are warped

and merged into the reference frame according to the optic low field. Finally, a standard single-

image deblurring algorithm is applied to obtain the super resolution result.

Jyothi Engineering College, Cheruthuruthy Dept. of CSE, 2014
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2.2.2 Methods using a generative model

More recent methods use a generative model of the camera transfer function which de-

termines how a real surface is transformed, filtered and sampled to form an image; and also an

accurate set of registrations between the input images. They proceed by finding a high reso-

lution image which, when transformed according to the registration parameters and degraded

according to the camera transfer function, produces a set of simulated images which are as

similar as possible to the actual observed low-resolution images.

Under the assumption of Gaussian distributed image noise, these methods produce the

maximum likelihood estimate (MLE) of the super-resolved surface intensities. It is also com-

mon to impose a prior model of the surface intensities (such as a spatial-smoothness constraint),

in which case the intensity estimates obtained are the maximum a posterior estimates (MAP).

Algorithms proposed vary in their registration methods, their use of prior texture models,

and the numerical methods used to converge to the required estimate. Irani and Peleg [22]

consider images obtained from a scanner which have undergone rotation and translation (a

Euclidean transformation). They consider optical blur, and obtain the kernel of the point spread

function (PSF) by imaging a small dot. Their cost function to be minimized is the sum of

squared differences in intensity values between the simulated low-resolution images and the

actual ones (see equation 2.1 in which ĝn is the nth simulated image and gn the associated

actual low-resolution image), and the super-resolved texture (typically double the resolution

of the input images) is found by a simple iterative update scheme similar to steepest descent.

Mann and Picard extended Irani and Peleg’s algorithm to fully projective image registration,

obtained using a coarseto-fine texture correlation strategy.

cost=∑n ∑(x,y)(ĝn(x,y)−gn(x,y))2 (2.1)

Elad & Feuer also make use of a generative model within a POCS based approach to
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super-resolution. They assume that accurate registration is known a priori, and fail to present

any results based on real images. Tom & Katsagellos [36] propose a frequency domain method

based on a generative model, in which the registration (limited to translation) and super-

resolution image are estimated simultaneously. Again, no real image results are presented.

Delleart et al. [13] propose an on-line method for the continuous super-resolution update of

a patch of texture as it is tracked. The affine tracking algorithm uses the current estimate

of the patch as a template, and the super-resolution update is performed using a very simpli-

fied Kalman-style update scheme. Shekarforoush [15] also propose several sequential update

schemes for super-resolution estimation using a generative model. Additionally, they propose

a novel method for estimating the blur function based on analysis of the cross-power spectrum

of the images. Their method is applied to real image sequences, with unconvincing results.

2.3 Frequency domain methods

The basic frequency-domain super-resolution problem of Tsai and Huang [37] or Kim et

al.[24] looks at the horizontal and vertical sampling periods in the digital image, and relates

the continuous Fourier transform of the original scene to the discrete Fourier transforms of

the observed low-resolution images. Both these methods rely on the motion being composed

purely of horizontal and vertical displacements, but the main motivating problem of processing

satellite imagery is amenable to this restriction.

The ability to cope with noise on the input images is added in by Kim et al. in [17], and

Tekalp et al. [10] generalize the technique to cope with both noise and a blur on the inputs due

to the imaging process.

Tom and Katsaggelos [36] etake a two-phase super-resolution approach, where the first

step is to register, deblur and de-noise the low-resolution images, and the second step is to

interpolate them together onto a high-resolution image grid. While much of the problem is
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Figure 2.1: Example of Frequency-domain super-resolution
taken from Tom and Katsaggelos [36]. Left: One of four synthesized low-resolution images.
Right: Super-resolved image. Several artifacts are visible, particularly along image edges, but the
overall image is improved.

specified here in the spatial domain, the solution is still posed as a Frequency domain problem.

Lastly, wavelet models have been applied to the problem, taking a similar overall ap-

proach as Fourier-domain methods. Nguyen and Milanfar [15] propose an efficient agorithm

based on representing the low-resolution images using wavelet coefficients, and relating these

coefficients to those of the desired super-resolution image. Bose et al. [32] also propose a

method based on second-generation wavelets, leading to a fast algorithm. However, while this

shows good results even in the presence of high levels of input noise, the outputs still display

wavelet-like high frequency artifacts.

2.4 spatial domain methods

Spatial domain methods enjoy better handling of noise, and a more natural treatment of

the image point-spread blur in cases where it cannot be approximated by a single convolution

operation on the high-resolution image (e.g. when the zoom or shear in the low-resolution im-

age registrations varies across the inputs). They use a model of how each offset low-resolution

pixel is derived from the high-resolution image in order to solve for the high-resolution pixel
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values directly.

The potential for using sub-pixel motion to improve image resolution is highlighted by

Peleg et al. [21]. They point out that a blurred high-resolution image can be split into 16

low-resolution images at a zoom factor of 4 by taking every 4th pixel in the horizontal and

vertical directions at each of the 4 × 4 different offsets. If all 16 low-resolution images are

available, the problem reduces to one of regular image deblurring, but if only a subset of the

low-resolution frames are present, there is still a clear potential for recovering high-frequency

information, which they illustrate on a synthetic image sequence.

A method for registering a pair of images is proposed in Keren et al. a38. The registration

deals with 2D shifts and with rotations within the plane of the image, so is more general than

that of . However, their subsequent resampling and interpolation scheme do little to improve

the high-frequency information content of the super-resolution image.

Progress was made by Irani et al. [21], who used the same registration algorithm, but

proposed a more sophisticated method for super-resolution image recovery based on back-

projection similar to that used in Computer Aided Tomography. They also propose a method

for estimating the point-spread function kernel responsible for the image blur, by scanning a

small white dot on a black background with the same scanner.

To initialize the super-resolution algorithm, Irani et al. take an initial guess at the high

resolution image, then apply the forward model of the image measurement process to work out

what the observed images would be if the starting guess was correct. The difference between

these simulated low-resolution images and the real input images is then projected back into

the high-resolution space using a back projection kernel so that corrections can be made to the

estimate, and the process repeated. It is also worth observing that at this point, the algorithms

proposed for spatial-domain super-resolution all constitute Maximum Likelihood methods.

Later work by Irani et al. [22] builds on their early super-resolution work, though the focus

shifts to object tracking and image registration for tracked objects, which allows the super-
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Figure 2.2: Example of early spatial-domain super-resolution
taken from Irani et al. [59]. Left: One of three low-resolution images (70 × 100 pixels) obtained
using a scanner. Right: Super-resolved image. The original images were captured using a scanner.

resolution algorithm to treat some rigid moving objects independently in the same sequence.

Another similar method by Zomet et al. [1] proposes the use of medians within their super-

resolution algorithm to make the process robust to large outliers caused by parallax or moving

specularities.

A good example of limiting the imaging model in order to achieve a fast superresolution

algorithm comes from Elad and Hel-Or . The motion is restricted to shifts of integer numbers of

high-resolution pixels (though these still represent sub-pixel shifts in the low-resolution pixels),

and each image must have the same noise model, zoom factor, and spatially invariant point-

spread function, the latter of which must also be realisable by a block-circulant matrix. These

conditions allow the blur to be treated after the interpolation onto a common high-resolution

frame ,this intuition is exactly the same as in [13, 20], but the work of [33] formalizes it and

explores more efficient methods of solution in more depth.
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Figure 2.3: The resolution conversion process

2.5 interpolation-based methods

In relation to the many applications of interpolation in signal processing (see [ 11 ),

the need for sampling rate adaption constantly arises in image processing. Examples of such

applications are image resolution conversion and image change of scale. Rigorously speaking,

the process of decreasing the data rate is called decimation and increasing the data samples is

termed interpolation.

Conceptually, the resolution conversion process can be regarded as a two-step operation.

First, the discrete data is reconstructed (or interpolated) into a continuous curve, then it is

sampled at a different sampling rate. This is shown in Figure 2.5. Nevertheless, the above steps

are only a mental picture for illustrating the underlying principle. In real digital processing, the

procedure of reconstruction by interpolation and sampling at a different rate can be done in one

operation. (There is never a continuous curve existing inside a digital processor.)

Image interpolation is a process that estimates a set of unknown pixels from a set of known

pixels in an image. It has been widely adopted in a variety of applications, such as resolution

enhancement, image demosaicing and unwrapping omni-images. The kinds of distortion and

levels of degradation imposed on the interpolated image depend on the interpolation algorithm,
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as well as the prior knowledge of the original image. Two of the most common types of degra-

dation are the zigzag errors also known as the jaggies, and the blurring effects.As a result, high

quality interpolated images are obtained when the pixel values are interpolated according to the

edges of the original images.

The paper [13] proposes an edge-directed interpolation algorithm for natural images. The

basic idea is to first estimate local covariance coefficients from a low-resolution image and

then use these covariance estimates to adapt the interpolation at a higher resolution based on

the geometric duality between the low-resolution covariance and the high-resolution covari-

ance. The edge-directed property of covariance-based adaptation attributes to its capability of

tuning the interpolation coefficients to match an arbitrarily oriented step edge. A hybrid ap-

proach of switching between bilinear interpolation and covariance-based adaptive interpolation

is proposed to reduce the overall computational complexity. Two important applications of the

new interpolation algorithm are studied: resolution enhancement of grayscale images and re-

construction of color images from CCD samples. Simulation results demonstrate that our new

interpolation algorithm substantially improves the subjective quality of the interpolated images

over conventional linear interpolation.

They propose a novel non iterative orientation adaptive interpolation scheme for natural-

image sources. Our motivation comes from the fundamental property of an ideal step edge

(known as geometric regularity [13]), i.e., that the image intensity field evolves more slowly

along the edge orientation than across the edge orientation. Geometric regularity has important

effects on the visual quality of a natural image such as the sharpness of edges and the freedom

from artifacts. Since edges are presumably very important features in natural images, exploiting

the geometric regularity of edges becomes paramount in many image processing tasks. In

the scenario of image interpolation, an orientation-adaptive interpolation scheme exploits this

geometric regularity.

Wing-Shan introduced a modification of the new edge-directed interpolation method that

eliminates the prediction error accumulation problem by adopting a modified training win-
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dow structure, and extending the covariance matching into multiple directions to suppress the

covariance mismatch problem. Simulation results show that the proposed method achieves

remarkable subjective performance in preserving the edge smoothness and sharpness among

other methods in the literature. It also demonstrates consistent objective performance among a

variety of images.

The kinds of distortion and levels of degradation imposed on the interpolated image de-

pend on the interpolation algorithm, as well as the prior knowledge of the original image. Two

of the most common types of degradation are the zigzag errors (also known as the jaggies),

and the blurring effects.As a result, high quality interpolated images are obtained when the

pixel values are interpolated according to the edges of the original images. A number of edge-

directed interpolation (EDI) methods have been presented in the literature. Some of them match

the local geometrical properties of the image with predefined templates in an attempt to obtain

an accurate model and thus estimate the unknown pixel values. However, these algorithms suf-

fer from the inherent problem with the use of edge maps or other image feature maps, where the

edges and other image features are difficult if not impossible to be accurately located. The poor

edge estimation limits the visual quality of the interpolated images. Other EDI methods make

use of the isophote-based methods to direct the edge interpolation to conform the pixel inten-

sity contours.These algorithms are highly efficient in interpolating sharp edges (with significant

intensity changes across edges).

However, the interpolation performance is degraded with blurred edges, which are com-

monly observed in natural images. To cater this problem, edge enhancement or sharpening

techniques are proposed.9 However, the use of an edge map is indispensable and noise amplifi-

cation is aroused with the application of postprocessing techniques. Besides using edge maps,

some EDI methods direct the interpolation by further locating the edge orientation with the use

of a gradient operator. These methods are effective in eliminating the blurring and staircase

problems by detecting the edge orientation adaptively. However, they suffer from the inherent

problem of using an edge map, and the gradient operator is not fully adaptive to the image
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structure.

2.6 Example based methods

Previous super-resolution approaches rely on aggregating multiple frames that contain

complementary spatial information. Generic image priors are usually deployed to regularize

the solution properly. The regularization becomes es- pecially crucial when insufficient num-

ber of measurements is supplied, as in the extreme case, only one single low-resolution frame

is observed. In such cases, generic image priors do not suffice as an effective regularization for

SR [2]. A recently emerging methodology for regularizing the ill-posed super resolution recon-

struction is to use examples, in order to break the super resolution limit caused by inadequate

measurements. Different from previous approaches where the prior is in a parametric form

regularizing on the whole image, the example-based methods develop the prior by sampling

from other images, similar to [24],[30] in a local way.

One family of example-based approaches is to use the examples directly, with the rep-

resentative work proposed by Freeman . Such approaches usually work by maintaining two

sets of training patches, sampled from the high resolution images, and sampled from the low

resolution images correspondingly. Each patch pair (xi; yi) is connected by the obser vation

model yi = DHxi + v. This high and low resolution co-occurrence model is then applied to the

target image for predicting the high resolution image in a patch-based fashion, with a Markov

Random Field (MRF) model as shown in Figure 2.6 The observation model parameters have

to be known as a prior, and the training sets are tightly coupled with the image targeted. Patch

size should also be chosen properly. If the patch size is very small, the co-occurrence prior is

too weak to make the prediction meaningful. On the other hand, if the patch size is too large,

one may need a huge training set to and proximity patches for the current observations.

A naive way to do super-resolution with such a coupled training sets is, for each low
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Figure 2.4: The MRF model for single frame super-resolution.

resolution patch in the low-resolution image, and its nearest neigh- bor and then put the cor-

responding from HR Image. Unfortunately, this simple approach will produce dis- turbing

artifacts due to noise and the ill-posed nature of super-resolution [25]. Relaxing the nearest

neighbor search to k-nearest neighbors can ensure that the proximity patch we desire will be

included. Freeman et al. [31] proposed a belief propagation [108] algorithm based on the above

MRF model to se- lect the best high resolution patch found by k-nearest neighbors that has best

compatibility with adjacent patches. Sun et al.[35] extended this idea using the sketch prior to

enhance only the edges in the image, aiming to speed up the algorithm. The IBP [39] algorithm

is then applied as a post processing step to ensure data consistence on the whole image. further

followed this line of work and proposed a statistical model that can handle unknown PSF.

One criticism with the aforementioned methods with direct examples is that operating on

local patches cannot guarantee global optimality of the es- timation. Another kind of example-

based approach seeks to perform MAP estimation with local priors on the image space sam-

pled from examples. The pioneering work by Baker and Kanade [5] formulated an explicit

regulariza- tion which demands proximity between the spatial derivatives of the unknown im-

age to those of the found examples. The examples are formed by a pyramid derivative set of

features, instead of raw data directly. Similar method is ap- plied to text super-resolution in

[35]. Elad [11] presented a global MAP estimation where the example-based regularization is
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given by a binary weighted average instead of the nearest neighbor, bypassing outliers due to

noise. This work is further extended and elaborated in [21], where the binary weighting scheme

is relaxed. Another noteworthy approach for example-based approach is by Protter , general-

ized from the nonlocal means denois- ing algorithm [8]. Instead of sampling examples from

other training images, the algorithm explores self-similarities within the image (or sequence)

and ex- tract the example patches from the target image (or sequence) itself. A recent work

by Glasner et al. further explored self-similarities in images for SR by combining the classical

algorithm based on subpixel displacements and the example-based method based on patch pairs

extracted from the target image.

The use of examples can be much more effective when dealing with nar- row families

of images, such as text and face images. A group of algorithms have emerged targeting face

super-resolution in recent years due to its im- portance in surveillance scenarios. Face super-

resolution is usually referred as face hallucination, following the early work by Baker and

Kanade [6]. Capel et al. [9] proposed an algorithm where PCA [45] subspace models are used

to learn parts of the faces. Liu et al. [8] proposed a two-step approach toward super-resolution

of faces, where the arrst step uses the eigenface [10] to generate a medium resolution face,

followed by the nonparametric patch- based approach [31] in the second step.

Example-based regularization is effective in our SR problem when insuf- Âŕcient obser-

vations are available. There are still a number of questions we need to answer regarding this

kind of approaches. First, how to choose the optimal patch size given the target image. Per-

haps a multi-resolution treat- ment is needed. Second, how to choose the database. Different

images have different statistics, and thereby need different databases. An efficient method for

dictionary adaptation to the current target image may suggest a way out. Third, how to use the

example-based prior more efficiently. The computation issue could be a difficulty for practical

applications. Readers are suggested to refer to [25] for more detailed analysis on example-

based regularization for inverse problems.
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2.7 Single-image methods

Single-image super-resolution methods cannot hope to improve the resolution by over-

coming the Nyquist limit, so any extra detail included in the high-resolution image by such

algorithms must come from elsewhere, and prior information about the usual structure of a

high-resolution image is consequently an important source.

The single-image super-resolution method proposed by Freeman is considered state-of-

the-art. It learns the relationship between low- and high-resolution image patches from training

data, and uses a Markov Random Field (MRF) to model these patches in an image, and to prop-

agate information between patches using Belief Propagation, so as to minimize discontinuities

at high-resolution patch boundaries.

Tappen et al. also use Belief Propagation to produce impressive single-image super-

resolution results, this time exploiting a high-resolution image prior based on natural image

statistics to improve the image edge quality in the high-resolution outputs. The example in

Figure 2.9 shows results from [19] for both this method and the original Freeman example-

based super-resolution method.

Sun et al. [35] perform what they term Image Hallucination on individual lowresolu-

tion images to obtain high-resolution output images in which plausible highresolution details

have been invented based on a "primal sketch" prior constructed from several unrelated high-

resolution training images. The results display plausible levels of high-frequency information

in the image edges at a zoom factor of three in each spatial direction, though in some cases

appear to suffer from an edge oversharpening phenomenon similar to that described above.

Jiji et al. work with wavelet coefficients as an image representation, rather than using

the pixel values in various frequency bands to estimage highfrequency image components as in

Freeman et al.’s work. Wavelets allow for more localized frequency analysis than global image

filtering or fourier transforms, though regularization is required to keep the outputs visually
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smooth and free from wavelet artifacts. Such single-frame wavelet methods are also improved

upon by Temizal and Vlachos [11], who use local corellations in wavelet coefficients to improve

their performance.

It is important to note that while none of these single-image methods needs to perform

registration/motion estimation between multiple inputs, these methods still highlight the great

importance of having a good model and of exploiting prior knowledge about working in the

image domain.
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CHAPTER 3

Preliminaries

First of all, we need to define what we understand by the term ’resolution’. If we take a

single image, and multiply its size by four by repeating each pixel value four times, do we gain

resolution? On the other hand, let us apply a blurring filter to an image. The resulting image

still has the same size, but does it have the same resolution?

The above examples show that there is more to resolution than just counting the number of

pixels that are present in the image. It is related to the ability to distinguish details in the image,

in other words, to its resolving power. The International Organization for Standardization (ISO)

has described a precise method to measure the resolution of a digital camera [5]. The visual

resolution can be measured as the highest frequency pattern of black and white lines where the

individual black and white lines can still be visually distinguished in the image. It is expressed

in line widths per picture height (LW/PH). The standard also describes a method to compute

the spatial frequency response (SFR) of a digital camera. The spatial frequency response is the

digital imaging equivalent of the modulation transfer function (MTF) used in analog imaging

systems. It describes the variation between the maximum and minimum values that is visible

as a function of the spatial frequency (the number of black and white lines per millimeter). It

can be measured using an image of a slanted black and white edge, and is expressed in relative

spatial frequencies (relative to the sampling frequency), line widths per picture height, or cycles

per millimeter on the image sensor.

Jyothi Engineering College, Cheruthuruthy Dept. of CSE, 2014



Super Resolution of Single Image 23

3.1 Image Resolution

The resolution of a digital image can be classified in many different ways. It may refer

to spatial, pixel, temporal, spectral or radiometric resolution. In the following work, it is dealt

mainly with spatial resolution.

A digital image is made up of small picture elements called pixels. Spatial resolution is

given by pixel density in the image and it is measured in pixels per unit area. Therefore, spatial

resolution depends on the number of resolvable pixels per unit length. The clarity of the image

is directly affected by its spatial resolution. The precise method for measuring the resolution of

a digital camera is defined by The International Organization for Standardization (ISO) [4,5].

In this method, the ISO resolution chart is sensed and then the resolution is measured as the

highest frequency of black and white lines where it is still possible to distinguish the individual

black and white lines. Final value is commonly expressed in lines per inch (lpi) or pixels

per inch (ppi) or also in line widths per picture height (LW/PH). The standard also defines

how to measure the frequency response of a digital imaging system (SFR) which is the digital

equivalent of the modulation transfer function (MTF) used for analog devices.

The effort to attain the very high resolution coincides with technical limitations. Charged

coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) sensors are widely

used to capture two-dimensional image signals. Spatial resolution of the image is determined

mainly by the number of sensor elements per unit area. Therefore, straightforward solution to

increase spatial resolution is to increase the sensor density by reducing the size of each sensor

element (pixel size). However, as the pixel size decreases, the amount of light impact on each

sensor element also decreases and more shot noise is generated [6]. In the literature [7], the

limitation of the pixel size reduction without obtaining the shot noise is presented.

Another way to enhance the spatial resolution could be an enlargement of the chip size.

This way seems unsuitable, because it leads to an increase in capacitance and a slower charge
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transfer rate [9]. The image details (high frequency content) are also limited by the optics (lens

blurs, aberration effects, aperture diffractions etc.). High quality optics and image sensors are

very expensive. Super-resolution overcomes these limitations of optics and sensors by devel-

oping digital image processing techniques. The hardware cost is traded off with computational

cost.

3.2 Super-resolution imaging

If we want to increase the resolution of an image using super-resolution techniques, we

essentially want to be able to distinguish more details in the final image. By adding images of

the same scene, we try to add information to the reproduction. Typically this information is

high frequency content of the scene.

There are different ways to add such high frequency information to an image. If we know

that the image is of a certain type (faces, text, drawings, etc.), we can use that knowledge to

add frequency content. Such an approach is called a model-based approach. For example, if

we know that the images represent printed text, we can try to recognize characters, and re-

place them by sharp, high quality characters. The knowledge of the image model allows us

to compute high frequency information. In this thesis, we will investigate abstract approaches

to super-resolution. They use other information than a precise image model, and are there-

fore applicable to more general types of images. More specifically, we will compute the high

frequency information from the aliasing that is present in the images.

Super-resolution techniques use a number of low resolution input images to generate

a high resolution image. This assumes that there are some (small) differences between the

input images. Most often, these differences are caused by small camera movements. In an

ideal situation, we could assume that of four images taken, the second to fourth image have a

horizontal, vertical, and diagonal shift of half a pixel compared to the first image. The pixels
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Figure 3.1: Ideal super-resolution setup
Four images are taken with relative shifts of half a pixel in horizontal, vertical, and diagonal
directions (left). Their pixels can then be interleaved to generate a double resolution image (right).

from the first image can then be interleaved with pixels from the three other images, and a

double resolution image (in both dimensions) is obtained (see Figure 3.2).

In general, however, the shifts between the images are not exactly half a pixel, and can

take any arbitrary value. Moreover, in most applications the motion parameters are unknown,

and need to be computed first. In the next chapters, we will present methods to compute these

motion parameters.

3.3 How is super-resolution possible?

Reconstruction-based super-resolution is possible because each low-resolution image we

have contains pixels that represent subtly different functions of the original scene, due to sub-

pixel registration differences or blur differences. We can model these differences, and then treat

super-resolution as an inverse problem where we need to reverse the blur and decimation.

Each low-resolution pixel can be treated as the integral of the high-resolution image over

a particular blur function, assuming the pixel locations in the highresolution frame are known,

along with the point-spread function that describes how the blur behaves. Since pixels are
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Figure 3.2: The creation of low-resolution image pixels.
The low-resolution image on the right is created from the high-resolution image on the left one
pixel at a time. The locations of each low-resolution pixel are mapped with sub-pixel accuracy
into the high-resolution image frame to decide where the blur kernel (plotted as a blue Gaussian
in the middle view) should be centred for each calculation.

discrete, this integral in the high-resolution frame is modelled as a weighted sum of high-

resolution pixel values, with the point- spreaad function (PSF) kernel providing the weights.

This image generation process is shown in Figure 3.3.

Each low-resolution pixel provides us with a new constraint on the set of highresolution

pixel values. Given a set of low-resolution images with different sub-pixel registrations with

respect to the high-resolution frame, or with different blurs, the set of constraints will be non-

redundant. Each additional image like this will contribute something more to the estimate of

the high-resolution image.

In addition to the model of Figure 3.3, however, real sensors also have associated noise

in their measurements, and real images can vary in illumination as well as in their relative

registrations. These factors must also be accounted for in a superresolution model, so the full

picture of how a scene or high-resolution image generates a low-resolution image set looks

more like that of Figure 3.3.
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Figure 3.3: One high-resolution image generates a set of low-resolution images.
Because the images are related by sub-pixel registrations, each observation gives us more addi-
tional constraints on the values of the high-resolution image pixel intensities.

Super-resolution (SR) represents a class of digital image processing techniques that en-

hance the resolution of an imaging system. Information from a set of low resolution images

(LR) is combined to create one or more high resolution images (HR). The high frequency

content is increased and the degradations caused by the image acquisition are reduced. The

LR images have to be slightly different, so they contain different information about the same

scene. More precisely, SR reconstruction is possible only if there are sub pixel shifts between

LR images, so that every LR image contains new information [1].

Sub pixel shifts can be obtained by small camera shifts or from consecutive frames of a

video where the objects of interest are moving. Multiple cameras in different positions can be

used. The basic principle of SR is shown in Figure 3.3. The camera captures a few LR images.

Each of them is decimated and aliased observation of the real scene. During SR reconstruction,

LR images are aligned with sub pixel accuracy and then their pixels are combined into an HR

image grid using various non-uniform interpolation techniques.

By a special type image, model-based approach can be applied. High frequency content
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Figure 3.4: Basic principle of super-resolution reconstruction

is calculated on base of the knowledge of the model. For example, if the algorithm recognizes

text, the letters can be replaced by sharper ones. In this work, attention is devoted to other

methods. These methods use other information than knowledge of an image model and they can

be applied to general images. Interpolation techniques based on a single image are sometimes

considered as closely related to SR.

These techniques indeed lead to a bigger picture size, but they don’t provide any additional

information. In contrast to SR, the high frequency content can’t be recovered. Therefore, image

interpolation methods are not considered as SR techniques [8].

Jyothi Engineering College, Cheruthuruthy Dept. of CSE, 2014



Super Resolution of Single Image 29

CHAPTER 4

Problem Definition

4.1 Introduction

Given that theories and observations are the two pillars of science, scientific research op-

erates at two levels: a theoretical level and an empirical level. The theoretical level is concerned

with developing abstract concepts about a natural or social phenomenon and relationships be-

tween those concepts (i.e., build "theories"), while the empirical level is concerned with testing

the theoretical concepts and relationships to see how well they reflect our observations of re-

ality, with the goal of ultimately building better theories. Over time, a theory becomes more

and more refined (i.e., fits the observed reality better), and the science gains maturity. Sci-

entific research involves continually moving back and forth between theory and observations.

Both theory and observations are essential components of scientific research. For instance, re-

lying solely on observations for making inferences and ignoring theory is not considered valid

scientific research.

A construct is an abstract concept that is specifically chosen (or "created") to explain a

given phenomenon. A construct may be a simple concept, such as a person’s weight.

A term frequently associated with, and sometimes used interchangeably with, a construct

is a variable. Etymologically speaking, a variable is a quantity that can vary (e.g., from low

to high, negative to positive, etc.), in contrast to constants that do not vary (i.e., remain con-

stant). However, in scientific research, a variable is a measurable representation of an abstract

construct. As abstract entities, constructs are not directly measurable, and hence, we look for

proxy measures called variables.
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Figure 4.1: The theoretical and empirical planes of research

Depending on their intended use, variables may be classified as independent, dependent,

moderating, mediating, or control variables. Variables that explain other variables are called in-

dependent variables, those that are explained by other variables are dependent variables, those

that are explained by independent variables while also explaining dependent variables are me-

diating variables (or intermediate variables), and those that influence the relationship between

independent and dependent variables are called moderating variables. As an example, if we

state that higher intelligence causes improved learning among students, then intelligence is an

independent variable and learning is a dependent variable. There may be other extraneous vari-

ables that are not pertinent to explaining a given dependent variable, but may have some impact

on the dependent variable. These variables must be controlled for in a scientific study, and are

therefore called control variables.

In this chapter we are discussing about the research topic in the research methadolgy

perspective.

4.2 Research problem

My research problem is to create the High Resolution image from single low resolution

image using mathematical model.
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We have already discussed about the resolution of images in the previous chapters and studied

different methods in the literarure survey. So we are trying to create an efficient approach for

SR methods. Since most of the SR research is going on the muti-frame images , we selected

single image methods.

Most of the methods using interpolation techniques but their complexity of hardares are

too high, so by using some mathematical model we can create SR image effectively.

4.3 Theoretical & Empirical Plane

The main aim of our research problem is to increase the spatial resolution. The basic

theory behind the approach is to increase either the value of pixel intencity of create more pixel

in the neighbour hood of one pixel. So ultimate aim to predict some values between 2 near

values(Pixel).

4.3.1 Constructs

As we told earlier, the ultimate representation of image is in terms of some pixel values or

data points. So we have 2 constructs. One is the pixels in the input image and the second one is

the predicted pixel values of high reolution. So the proposition between this two constrcts can

be considers as prediction of more pixels.

4.3.2 Variables

If we move from the theretical level to higher level, the image of LR is the indepen-

dend variable and the HR image is the dependend variable.The relation between these variables

generating mutilple data points.
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Figure 4.2: Planes Of RM

4.4 Research Design

Here we are telling how we are organizing our entire thesis work. We have already

expliained about the research problem as well as the constructs and variables.

The basic theory behind the proposition is the mean value between toe points. Simple

mean gives the new value in between the 2 values(Average). We started with the mean, the

statical tool. We also improved the different statistical tool.

There are several factor which depend controls the process. The colour components are

the main one.

4.4.1 Data Collection

We have collected the data from previous works.

4.5 Hypothesis

If use the mathematical models then we can create the HR image more effectively.
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CHAPTER 5

Gaussian Process

A Gaussian process is a generalization of the Gaussian probability distribution. Whereas

a probability distribution describes random variables which are scalars or vectors (for multi-

variate distributions), a stochastic process governs the properties of functions. Leaving math-

ematical sophistication aside, one can loosely think of a function as a very long vector, each

entry in the vector specifying the function value f(x) at a particular input x.

Gaussian Process (GP) defines a distribution over function f, where f is a mapping

from the input space χ to κ , such that for any finite subset of χ , its marginal distribution

P( f (x1), f (x2), ..., f (xn)) is a multivariate normal distribution, where x an input vector. In this

section we give a brief review of GPR for implementation purpose; further details can be found

in [17].

Gaussian Process is parameterized by its mean function m(x) and covariance function

k(xi;x j) such that

f | X ∼ N(m(x);K(X ;X)) (5.1)

or equivalently,

f(x) ∼ GP(m(x);k(xi;x j)) : (5.2)

where rows of the design matrix X are input vectors, f is a vector of function values and

K(X;X) denotes the n by n matrix of covariances such thatKi j = k(xi;x j).
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Figure 5.1: Graphical model (chain graph) for a GP for regression.
Squares represent observed variables and circles represent unknowns. The thick horizontal bar
represents a set of fully connected nodes. Note that an observation yi is conditionally independent
of all other nodes given the corresponding latent variable, fi. Because of the marginalization
property of GPs addition of further inputs, x, latent variables, f, and unobserved targets, y*, does
not change the distribution of any other variables.

5.1 Covariance Functions

The covariance function plays the central role in GPR as it encodes our assumptions about

the underlying process by defining the similarity between functions.

Covariance function is the crucial ingredient in a Gaussian process predictor, as it encodes

our assumptions about the function which we wish to learn. From a slightly different viewpoint

it is clear that in supervised learning the notion of similarity between data points is crucial; it is

a basic similarity assumption that points with inputs x which are close are likely to have similar

target values y, and thus training points that are near to a test point should be informative about

the prediction at that point. Under the Gaussian process view it is the covariance function that

defines nearness or similarity.

Figure 5.1(c) shows the covariance matrix K for one edge pixel x (the crossed point) in

Figure 5.1(a) predicted by training points X in the LR training patch, where Ki j = k(x;Xij) and i,

j correspond to pixel indices in Figure refs1(b). Observe that high responses (red regions) from

the training patch are largely concentrated on edges, which justifies our choice of the covariance

function. In addition, it is noted that high-responsive regions do not only include points on the

same edge as the test point, but also other similar edges within the patch. Thus, the process can
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capture both local and global similarity within a patch. In general, pixels embedded in a similar

structure to that of the target pixel in terms of the neighborhood tend to have higher weights

during prediction.

Figure 5.2: Covariance Function.
(b) is a patch from the LR input image and (a) is its corresponding patch from the upsampled
image (bicubic interpolation). The crossed point in (a) is a test point x to be estimated from the
traning set X in (b). (c) shows its covariance matrix, where each pixel’s intensity value is propor-
tional to the covariance between x and the training target at the same location in (b), evaluated by
the covariance function, Equation 10

5.2 BACK-PROJECTION

Back-projection [1] method can minimize the reconstruction error efficiently by an iter-

ative algorithm. In each step, the current reconstruction error is back-projected to adjust the

image intensity. Although this method can improve the image quality greatly, it suffers from

some unsatisfying artefacts, such as the ringing effect and the chessboard effect. The underlin-

ing reason is the usage of isotropic back-projection kernel. In fact, due to the under-determined

nature of the SR task, there exist a lot of minimizers for the reconstruction error. It is very

likely that the isotropic back-projection kernel leads to unsatisfactory results, since the edge

information is totally ignored throughout the update procedure.

n this thesis, the bilateral back-projection method is pro- posed to solve the problems

associated with the original one , when it is applied to single image SR. We first show that, for

any given positive integer scaling factor, the original back-projection algorithm can minimize

the reconstruction error efficiently under certain conditions. Then, the idea of bilateral filtering
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is employed to guide the back-projection process.
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CHAPTER 6

System Design

This chapter gives the over all idea about the super resolution technique we are imple-

memted in this thesis.

6.1 Proposed System

In our regression-based framework, patches from the HR image are predicted pixelwise

by corresponding patches from the LR image . GPR provides a way for soft-clustering of the

pixels based on the local structures they are embedded . Given the intuitive interpretation of

hyperparameters of the covariance function in our case, we can optimize their values through

MAP estimation.

The steps we are following to create the HR image are

1. Upsample the image using bicubic

2. Apply the back Projection Algorithm

3. Calculate Neighburhood

4. Blur and downsanple

5. Mix the details with Upsampled image

6. Deblur the image
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6.1.1 Single Image SR

The Figure 5 in the previous chapter shows a chain graph representation of GPR for

image SR in our setting, where each 3 × 3 patch from the input image forms a predictor-target

training pair. The observed y is the intensity of the pixel at the center of a 3×3 patch and x is

an eight-dimensional vector of its surrounding neighbors. In order to adapt to different regions

of the image, it is partitioned into fixed-sized and overlapped patches (e.g., 30×30), and the

algorithm is run on each of them separately. The patch-based results are then combined to give

the whole HR image.

We predict the HR image using a two-stage coarse-tofine approach, which is consistent

with the image formation process. As shown in [2, 18], the imaging process can be modeled as

a degradation process of the continuous spatial domain depending on the camera’s Point Spread

Function (PSF). After discretization, this process can be further expressed as

L = (f ∗H) ↓d∩H = f ∗HandL = ∩H ↓d (6.1)

where L and H denote the LR and HR image respectively, H̃ denotes the blurred HR

image, f is the blur kernel and ↓d denotes the downsampling operator with a scaling factor d.

As a reasonable inversion of the degradation process, in the first stage we intend to upsample

the LR image without loss of details and obtain ∩H . In the second stage we use L and its

blurred version ∩L (downsampled from ∩H ) to simulate the blurring process, thus refine the

estimates to recover H. The above ideas can be implemented by Algorithm 1 in Figure ??.

Figure 6.2 gives a real example of the resolving process. Figure 6.2(a), 6.2(b) and 6.2(c)

show the first stage, where both the training targets sampled in Figure 6.2(a) and their neighbors

in Figure 6.2(b) come from the LR input patch. Neighbors for predicting pixels in the HR image

are obtained by upsampling Figure 6.2(a) using bicubic interpolation. Figure 6.2(d), 6.2(e) and

6.2(f) show the second stage, where the training targets 2(d) are the same as those in the first

Jyothi Engineering College, Cheruthuruthy Dept. of CSE, 2014



Super Resolution of Single Image 39

Algorithm 1 Algorithm for Implementation
SRGPR(L)

H̃←U psample(L)
L̃← H̃ ↓ (BlurandDownsample)
H← Deblur(H̃,L, H̃) return H

Function : Upsample(L)
Bicubic Interpolation :Hb← L ↑
Partition L into n overlapped patches p1, p2, ...pn
for pL = p1, p2, ...pn : Sample pixels in pL to obtain the target vector y Put the eight
neighbours of each element of y in XNL as a row vector for training Train a GPR
model M using {y,XNL} Put the eight neighbours of each pixel of Hb in XNHb as a
row vector for prediction
pH̃ ←M(XNHb)
end
return H̃ constructed from pH̃

Function : Deblur(H̃,L, H̃)
Partition L̃ into n overlapped patches p1, p2, ...pn
for pL̃ = p1, p2, ...pn : Obtain the same target vector y in pL Put the eight neighbors
in pL̃ of each element of y in XNL̃ as a row vector for training Train a GPR model M
using {y,XNL̃}
Put the eight neighbours of each pixel of H̃ in XNH̃ XNHb as a row vector
for prediction
pH ←M(XNL̃)

end
return H constructed from pH

stage, while the neighbors come from the blurred patch (Figure 6.2(e)). Figure 6.2(f), the

deblurred result shows sharper edges than Figure 6.2(c) from stage one.

6.2 System Design

The algorthm is already explained in the previous section. The flow of methods in given

in the following diagram.
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Figure 6.1: Single image SR framework
(a) and (d) are input LR patches, in which the crossed points are target pixels for training produced
by simple grid sampling. (b) is the same patch as (a), where neighbors are taken as the intensity
values of the crossed points’ surrounding pixels. (e) is obtained by blurring and downsampling
(c), the output of stage one. Neighbors are taken in the same way as in stage one from (e). (f)
shows the deblurred result of the second stage.

Figure 6.2: Data Flow Diagram of the System
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6.3 System Specification

For the simulation of the thesis work we used following tolls

• Matlab : Version 2012a

• C programming Language
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CHAPTER 7

Simulation & Testing

We test the method on a variety of images with a magnification factor from 2 to 10. In

most of our experiments we began by using the original image as LR input and magnify it with

a scale factor of 2. For further magnification, we used the previous output image as the input

LR image and solved its HR image.

In the second stage of our method, we made use of the original LR image for deblurring,

which also serves as a constraint that when downsampled, the HR image should reproduce the

LR image. We set the patch size to 20× 20 for the original LR image and increase it according

to the magnification factor in later magnifications. For each patch, approximately 2 or 3 area is

overlapped with neighboring patches.

After running our algorithm on each patch, we combined them by linear smoothing in

the overlapping areas. When processing color images, we worked in the YIQ color space and

only applied our SR method to the illuminance (Y) channel since humans are more sensitive

to illuminance changes. The other two chrominance channels (I and Q) are simply upsampled

using bicubic interpolation. The three channels were then combined to form our final HR

image.

7.1 Results

In this section we are including the output images of results we obtained during the

simulation.
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Figure 7.1: Butterfly Image Input Figure 7.2: Butterfly Image Output

Figure 7.3: Clock Image Input Figure 7.4: Clock Image Output

Figure 7.5: Daisy Image Input Figure 7.6: Daisy Image Output
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Figure 7.7: Tower Image Input Figure 7.8: Tower Image Output

7.2 Testing

The simplest and most widely used full-reference quality metric is the mean squared er-

ror (MSE), computed by averaging the squared intensity differences of distorted and reference

image pixels, along with the related quantity of peak signal-to-noise ratio (PSNR). These are

appealing because they are simple to calculate, have clear physical meanings, and are math-

ematically convenient in the context of optimization. But they are not very well matched to

perceived visual quality.

There is another tool SSIM(Strcutual Similarity Index) is a method for measuring the

similarity between the images. The ssim index is a full reference metric; in other words, the

meassuring of image qulaity based on an initial uncompressed or distortion free image as refer-

nce. SSIM is designed to improve on traditional method like PSNR and MSE.

The testing results of various images are given in the Table 7.1

Image RMS MSSIM
Daisy 17.02 0.85
Tower 9.68 0.79
Clock 11.02 0.86

Butterfly 10.01 0.89

Table 7.1: RMS errors and MSSIM scores of different Images
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CHAPTER 8

Conclusion & Future Work

In this paper we present a novel method for single image super-resolution. Instead of im-

posing sophisticated edge priors as in [6, 19], we use a simple but effective covariance function

to capture the local structure of each pixel through the Gaussian process regression. In addition,

by using a non-parametric Bayesian model, the prediction process is able to adapt to different

edges in the local image patch instead of setting a general parameter learnt from a large num-

ber of images. The experimental results show that our method can produce sharp edges with

minimal artifacts. We propose a two-stage framework, where the first stage aims to recover

an HR image based on the structural information extracted from the LR image and the second

stage intends to refine the obtained HR image by learning from a training set constructed by

the LR image itself. In comparison to the general training set as used in [7, 24], our results

capture most of the details presented in the LR image and the visual quality is comparable to

some example-based methods. Though presented in the context of super-resolution, our frame-

work of self-directed learning can be extended to other image reconstruction scenarios such as

denoising and deblurring by modifying the covariance function and the training pairs. Finally,

the performance may be further improved through using more complex covariance function to

include extracted features and to express explicitly the local structure of a pixel.

8.1 Future Work

Another diffculty limiting practical application of SR reconstruction is its intensive com-

putation due to large number of unknowns, which require ex- pensive matrix manipulations.

Real applications always demand efficiency of the SR reconstruction to be of practical utility,
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e.g., in the surveillance video scenarios, it is desired for the SR reconstruction to be real time.

Efficiency is also desirable for SR systems with users in the loop for tuning parameters. Many

SR algorithms targeting efficiency fall into the previously discussed interpolation-restoration

approach.

However, such algorithms require precise image registration, which is com- putation in-

tensive in the first place. Moreover, these algorithm can only handle simple motion models

effciently up to now, far from application in real com- plex video scenarios. For videos with ar-

bitrary motions, [12] suggests promis- ing directions for seeking efficient algorithms. It is also

interesting to see how parallel computing, e.g., GPU, and hardware implementations affect the

fu ture applications of SR techniques.
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