
Lecture 9 — The M/G/1 System

In this lecture we move away from studying purely Markov systems and study the M/G/1 queue
and the special case of the M/D/1 queue. (Note that we could see the M/M/1 queue as a
special case of the M/G/1 queue). The result derived is known as the Pollaczek-Khinchin (P-K)
formula. The formula we are working to prove is given by first defining:

X = E [X] =
1

µ
= Average service time

and
X2 = E

[

X2
]

= Second moment of service time

The P-K formula is then:

W =
λX2

2(1 − ρ)

where W is the expected customer waiting time in a queue and ρ = λ/µ = λX the utilisation as
usual.

This lecture we will derive and use the P-K formula and a simple variant.

First let us introduce some notation:

Wi waiting time (in queue) for ith customer.

Xi service time of the ith customer – we assume that these are independent and identically
distributed (i.i.d) variables.

Ni number of customers that is found in the queue (not yet being served) when the ith customer
arrives.

Ri residual service time found by the ith customer (defined below).

Definition 1. The residual time Ri is the service time remaining to the customer being served
when the ith customer arrives at the queue. If no customer is currently being served then Ri = 0.

A graph will help understand the concept of residual time. Figure 1 shows the residual time in
a queue r(τ) is the residual time remaining at time τ . Xi is the service time of the ith customer
(note that the slopes of all the diagonal lines on this graph are, obviously, one). If we take a
time t where the system is empty (as shown in the diagram) then define M(t) as the number of
customers who have been served and exited the system by time t.

The mean residual time in the interval [0, t] is clearly the average value on the y axis in the
interval. This is the area under the curve divided by t which is given by

1

t

∫ t

0

r(τ)dτ =
1

t

M(t)
∑

i=1

1

2
X2

i .

Which we can rewrite as
1

t

∫ t

0

r(τ)dτ =
1

2

M(t)

t

∑M(t)
i=1 X2

i

M(t)
.

Now, assuming the relevant limits exist we have:

lim
t→∞

1

t

∫ t

0

r(τ)dτ =
1

2
lim

t→∞

M(t)

t
lim

t→∞

∑M(t)
i=1 X2

i

M(t)
. (1)
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Figure 1: Service Time of Arrivals at an M/G/1 queue.

Now, if we assume that the system is ergodic then we can replace these time averages with
ensemble averages. In this case define

R = Mean residual time = lim
i→∞

E [Ri] ,

and, if the time average is the state space average, then

R = lim
t→∞

1

t

∫ t

0

r(τ)dτ.

Since the system is lossless (no customers ever vanish) then if the number of customers does not
rise forever — the number queuing tends to a limit — we can say that the departure rate must
equal the arrival rate. That is

lim
t→∞

M(t)

t
= λ.

Therefore equation (1) becomes

R =
1

2
λX2. (2)

Now, we know that the waiting time for the ith customer is equal to the residual service time of
the customer currently being served plus the total service times of those who are in the queue.
This is given by

Wi = Ri +

i−1
∑

j=i−Ni

Xj .

We note that the Xjs are i.i.d by hypothesis. Ni cannot possibly be affected by the Xj values
in this sum since those are the service times of customers who are still waiting in this queue.
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Therefore, Ni is also independent from the Xj in the above. Therefore we may take expectations
as follows

E [Wi] = E [Ri] + E





i−1
∑

j=i−Ni

E [Xj |Ni]



 = E [Ri] + XE [Ni] .

Finally, taking the limit as i → ∞ and remembering that X = 1
µ

then

W = R +
1

µ
NQ,

where NQ is the limit as i → ∞ of the expected number found in the queue. By Little’s theorem
we get

NQ = λW,

and therefore

W = R +
λ

µ
W.

Rearranging and substuting ρ = λ/µ and our expression for R from equation (2) then

W =
λX2

2(1 − ρ)
,

which is the P-K formula we required.

Let us remember the assumptions for this remarkably general formula:

1. The sending process was a Poisson process with parameter λ.

2. The steady state time averages R, W and NQ exist.

3. The long-term time averages correspond to the state-space averages.

4. The service times Xi are i.i.d. variables.

In our derivation we also assumed that the system was FIFO although this is not, in fact,
necessary — it is only necessary that the order of service is independent of the required service
time.

Note that the M/D/1 queue is the special case of this when all service times are identical. In
this case Xi = 1

µ
and therefore X2 = 1

µ2 and

W =
ρ

2µ(1 − ρ)
.

This is the lowest possible value of X2 and therefore a lower bound for any M/G/1 system.
Compare it to the M/M/1 system where X2 = 2/µ2 and therefore

W =
ρ

µ(1 − ρ)
.

In other words the M/M/1 formula has twice the waiting time of the lower bound M/D/1
waiting time. We should also note that there is no upper bound on X2 therefore it is possible
that queues which have a utilisation less than one have an infinite waiting time.
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Further M/G/1 information

Question

What is the probability that the system is empty when a customer arrives?

Answer

The expected time to serve n customers is
∑n

i=1 Xi. The expected time for n customers to
depart is n/λ (since the customers are generated by a Poisson process with rate λ and are also
departing at a similar rate as previously stated).

P [Empty] = lim
n→∞

Time taken for n customers to depart − Time serving n customers

Time taken for n customers to depart
,

which is

P [Empty] = lim
n→∞

n/λ −
∑n

i=1 Xi

n/λ
.

Therefore,
P [Empty] = 1 − λX.

Question

What is the average length between busy periods?

Answer

A period between busy periods begins when the last customer exits. It will end when the next
customer is generated. Since the generating process is a Poisson and therefore memoryless, the
expected time for the next arrival is after a time 1/λ.

Question

What is the average length of a busy period?

Answer

If L is the average length of a busy period then

P [Empty] =
1/λ

L + 1/λ
(3)

Substuting from earlier and multiplying top and bottom of RHS by λ

1 − λX =
1

λL + 1
.

Rearranging gives

λL + 1 =
1

1 − λX
,
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and final rearrangement gives

L =
X

1 − λX
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