## Lecture 9 - The $M / G / 1$ System

In this lecture we move away from studying purely Markov systems and study the $M / G / 1$ queue and the special case of the $M / D / 1$ queue. (Note that we could see the $M / M / 1$ queue as a special case of the $M / G / 1$ queue). The result derived is known as the Pollaczek-Khinchin (P-K) formula. The formula we are working to prove is given by first defining:

$$
\bar{X}=\mathrm{E}[X]=\frac{1}{\mu}=\text { Average service time }
$$

and

$$
\overline{X^{2}}=\mathrm{E}\left[X^{2}\right]=\text { Second moment of service time }
$$

The P-K formula is then:

$$
W=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}
$$

where $W$ is the expected customer waiting time in a queue and $\rho=\lambda / \mu=\lambda \bar{X}$ the utilisation as usual.

This lecture we will derive and use the P-K formula and a simple variant.
First let us introduce some notation:
$W_{i}$ waiting time (in queue) for $i$ th customer.
$X_{i}$ service time of the $i$ th customer - we assume that these are independent and identically distributed (i.i.d) variables.
$N_{i}$ number of customers that is found in the queue (not yet being served) when the $i$ th customer arrives.
$R_{i}$ residual service time found by the $i$ th customer (defined below).
Definition 1. The residual time $R_{i}$ is the service time remaining to the customer being served when the $i$ th customer arrives at the queue. If no customer is currently being served then $R_{i}=0$.

A graph will help understand the concept of residual time. Figure 1 shows the residual time in a queue $r(\tau)$ is the residual time remaining at time $\tau . X_{i}$ is the service time of the $i$ th customer (note that the slopes of all the diagonal lines on this graph are, obviously, one). If we take a time $t$ where the system is empty (as shown in the diagram) then define $M(t)$ as the number of customers who have been served and exited the system by time $t$.

The mean residual time in the interval $[0, t]$ is clearly the average value on the $y$ axis in the interval. This is the area under the curve divided by $t$ which is given by

$$
\frac{1}{t} \int_{0}^{t} r(\tau) d \tau=\frac{1}{t} \sum_{i=1}^{M(t)} \frac{1}{2} X_{i}^{2} .
$$

Which we can rewrite as

$$
\frac{1}{t} \int_{0}^{t} r(\tau) d \tau=\frac{1}{2} \frac{M(t)}{t} \frac{\sum_{i=1}^{M(t)} X_{i}^{2}}{M(t)}
$$

Now, assuming the relevant limits exist we have:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} r(\tau) d \tau=\frac{1}{2} \lim _{t \rightarrow \infty} \frac{M(t)}{t} \lim _{t \rightarrow \infty} \frac{\sum_{i=1}^{M(t)} X_{i}^{2}}{M(t)} \tag{1}
\end{equation*}
$$



Figure 1: Service Time of Arrivals at an $M / G / 1$ queue.

Now, if we assume that the system is ergodic then we can replace these time averages with ensemble averages. In this case define

$$
R=\text { Mean residual time }=\lim _{i \rightarrow \infty} \mathrm{E}\left[R_{i}\right]
$$

and, if the time average is the state space average, then

$$
R=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} r(\tau) d \tau
$$

Since the system is lossless (no customers ever vanish) then if the number of customers does not rise forever - the number queuing tends to a limit - we can say that the departure rate must equal the arrival rate. That is

$$
\lim _{t \rightarrow \infty} \frac{M(t)}{t}=\lambda
$$

Therefore equation (1) becomes

$$
\begin{equation*}
R=\frac{1}{2} \lambda \overline{X^{2}} . \tag{2}
\end{equation*}
$$

Now, we know that the waiting time for the $i$ th customer is equal to the residual service time of the customer currently being served plus the total service times of those who are in the queue. This is given by

$$
W_{i}=R_{i}+\sum_{j=i-N_{i}}^{i-1} X_{j} .
$$

We note that the $X_{j}$ s are i.i.d by hypothesis. $N_{i}$ cannot possibly be affected by the $X_{j}$ values in this sum since those are the service times of customers who are still waiting in this queue.

Therefore, $N_{i}$ is also independent from the $X_{j}$ in the above. Therefore we may take expectations as follows

$$
\mathrm{E}\left[W_{i}\right]=\mathrm{E}\left[R_{i}\right]+\mathrm{E}\left[\sum_{j=i-N_{i}}^{i-1} \mathrm{E}\left[X_{j} \mid N_{i}\right]\right]=\mathrm{E}\left[R_{i}\right]+\bar{X} \mathrm{E}\left[N_{i}\right]
$$

Finally, taking the limit as $i \rightarrow \infty$ and remembering that $\bar{X}=\frac{1}{\mu}$ then

$$
W=R+\frac{1}{\mu} N_{Q}
$$

where $N_{Q}$ is the limit as $i \rightarrow \infty$ of the expected number found in the queue. By Little's theorem we get

$$
N_{Q}=\lambda W
$$

and therefore

$$
W=R+\frac{\lambda}{\mu} W .
$$

Rearranging and substuting $\rho=\lambda / \mu$ and our expression for $R$ from equation (2) then

$$
W=\frac{\lambda \overline{X^{2}}}{2(1-\rho)},
$$

which is the $\mathrm{P}-\mathrm{K}$ formula we required.
Let us remember the assumptions for this remarkably general formula:

1. The sending process was a Poisson process with parameter $\lambda$.
2. The steady state time averages $R, W$ and $N_{Q}$ exist.
3. The long-term time averages correspond to the state-space averages.
4. The service times $X_{i}$ are i.i.d. variables.

In our derivation we also assumed that the system was FIFO although this is not, in fact, necessary - it is only necessary that the order of service is independent of the required service time.

Note that the $M / D / 1$ queue is the special case of this when all service times are identical. In this case $X_{i}=\frac{1}{\mu}$ and therefore $\overline{X^{2}}=\frac{1}{\mu^{2}}$ and

$$
W=\frac{\rho}{2 \mu(1-\rho)}
$$

This is the lowest possible value of $\overline{X^{2}}$ and therefore a lower bound for any $M / G / 1$ system. Compare it to the $M / M / 1$ system where $\overline{X^{2}}=2 / \mu^{2}$ and therefore

$$
W=\frac{\rho}{\mu(1-\rho)} .
$$

In other words the $M / M / 1$ formula has twice the waiting time of the lower bound $M / D / 1$ waiting time. We should also note that there is no upper bound on $\overline{X^{2}}$ therefore it is possible that queues which have a utilisation less than one have an infinite waiting time.

## Further $M / G / 1$ information

## Question

What is the probability that the system is empty when a customer arrives?

## Answer

The expected time to serve $n$ customers is $\sum_{i=1}^{n} X_{i}$. The expected time for $n$ customers to depart is $n / \lambda$ (since the customers are generated by a Poisson process with rate $\lambda$ and are also departing at a similar rate as previously stated).

$$
\mathbb{P}[\text { Empty }]=\lim _{n \rightarrow \infty} \frac{\text { Time taken for } n \text { customers to depart }- \text { Time serving } n \text { customers }}{\text { Time taken for } n \text { customers to depart }}
$$

which is

$$
\mathbb{P}[\text { Empty }]=\lim _{n \rightarrow \infty} \frac{n / \lambda-\sum_{i=1}^{n} X_{i}}{n / \lambda}
$$

Therefore,

$$
\mathbb{P}[\text { Empty }]=1-\lambda \bar{X}
$$

## Question

What is the average length between busy periods?

## Answer

A period between busy periods begins when the last customer exits. It will end when the next customer is generated. Since the generating process is a Poisson and therefore memoryless, the expected time for the next arrival is after a time $1 / \lambda$.

## Question

What is the average length of a busy period?

## Answer

If $L$ is the average length of a busy period then

$$
\begin{equation*}
\mathbb{P}[\text { Empty }]=\frac{1 / \lambda}{L+1 / \lambda} \tag{3}
\end{equation*}
$$

Substuting from earlier and multiplying top and bottom of RHS by $\lambda$

$$
1-\lambda \bar{X}=\frac{1}{\lambda L+1}
$$

Rearranging gives

$$
\lambda L+1=\frac{1}{1-\lambda \bar{X}}
$$

and final rearrangement gives

$$
L=\frac{\bar{X}}{1-\lambda \bar{X}}
$$

